
OSG Services for Campuses

Brian Bockelman
PATh Fabric of Capacity Services/Production Services

Investigator,
Morgridge Institute for Research

This project is supported by National Science Foundation under 
Cooperative Agreement OAC-2030508. Any opinions, findings, conclusions 
or recommendations expressed in this material are those of the authors and 
do not necessarily reflect the views of the National Science Foundation.



Services for Your Campus

• Today I want to outline three services 
relevant to a campus community:
- Sharing Compute Resources (the “Compute 

Entrypoint”).
- Providing an Access Point to the OS Pool and 

OS Data Federation (origin).
- Integrating data resources as caches in the 

data federation.
• Let’s start with resource sharing!

2



Resource Sharing on OSG

3

OSG is a consortium dedicated to the advancement of 
all of open science via the practice of distributed High 
Throughput Computing (dHTC), and the advancement 

of its state of the art.

dHTC enables us to effectively enable resource sharing 
across more than a hundred sites in the US!



Resource Sharing

• OSG shares resources via the 
concept of an “overlay pool”.
- Disparate worker node resources are 

allocated (think: starting a VM).
- Some piece of software (“pilot”) starts 

on the worker node which 
subsequently connects to a central 
pool.

- Work – batch jobs! - from the outside 
is pulled down to the worker node 
and executed.  These are “payload” 
jobs.

• Technologies we’ll see today:
- HTCondor manages the jobs and 

central pool.
- glideinWMS helps decide where and 

when to allocate resources.
- Batch systems: that’s up to you!

4

https://research.cs.wisc.edu/htcondor/
https://glideinwms.fnal.gov/doc.prd/index.html


Now with Jargon!

In HTCondor Jargon:
• The software the pilot deploys on 

the site’s worker node is called 
the startd.

• The central manager has three 
primary components:
- Collector: daemon where all the 

resource descriptions are 
uploaded from the worker node.

- Condor Connection Broker 
(CCB): Used to manage network 
connections, allowing startd to 
be behind a NAT.

- Negotiator: Implements policy 
and allocates the share of 
resources to different users.

5

Could be SLURM-
based sites

Maybe 
HTCondor 

underneath?



Important Observations

• OSG heavily leverages HTCSS (HTCondor) for 
constructing its resource sharing.
- Your campus does not need to run HTCSS.

§ Of course, ‘HTCondor on top of HTCondor’ works quite well
§ OSG supports integration with SLURM, SGE, and PBS as a 

batch system.
§ Non-batch system integrations have included Kubernetes

(quite successful) and OpenStack (less popular).
• An important OSG principle is site autonomy.  Your 

campus makes the decisions, not OSG.
- Obviously, decisions have impact.  For example, 

almost all GPU jobs run inside containers.  If your 
campus doesn’t support containers, OSG may not have 
jobs to run.

6



Processes on the worker

• We overlay a batch system inside a batch system.  This is not a 
common thing to do!

• Beyond the batch system processes, the running pilot has a 
few components:
- A shell wrapper to startup the pilot,
- Condor helper daemons,
- The condor worker node processes and the process representing 

the running job
- And finally, any processes that are part of the payload job!

• Warning: more processes than you typically see on the 
worker node.

7



Resource Requests

• To start a pilot at the site, some service is needed to 
connect the site’s batch system to the external world.
- This is a “Compute Entrypoint”, or “CE”.
- We use the “HTCondor-CE” implementation.
- Three supported models: traditional onsite deploy (by site), 

Hosted CE (run by OSG), or an onsite hosted CE (run by 
OSG).

8



Resource Requests

• Today we’ll cover the Hosted CE.  The 
different deployment types:
- Determine how much configuration the site 

controls (traditional deploy offers most control).
- Determines the total site admin time invested 

(hosted option is the minimal option).

9



Resource Requests

• Hosted CE: Here, ‘hosted’ means ‘run by 
OSG’.
- There’s no charge for this service – supported

by the NSF-funded PATh project.
- Works for sites large and small.

10



Allocating Resources

“Resources Allocations” are 
really batch jobs.
• These batch jobs arrive from 

the hosted CE to the site 
login host via SSH.
- One CE per SSH host.
- Each supported community 

is a separate Unix account.
• You can ban or prioritize 

individual communities 
without involving OSG as 
each community is a distinct 
batch user.

11



Allocating Resources

• The OS Pool is a specific community 
operated by OSG.
- This includes XSEDE allocations, 

scientific collaborations -- all under the 
umbrella of ‘open science’ and research.
§ We have simple demographics and 

accounting for this community available to 
you.

• OSG is here to facilitate resource 
sharing, not demand specific resource 
allocations (autonomy!).
- You can decide whether you share 

resources with the OS Pool, LIGO, 
CHTC (UW-Madison), IceCube, LHC, or 
others.

• We can help with batch system 
configuration to implement your desired 
policy!

12



Allocating Resources

The OSG “factory” creates pilot jobs 
for each CE to submit to the local 
batch system.
• Most, but not all, communities use 

the OSG-run factory.  Some run 
their own.

• Each community has a “frontend,” 
which determines the resource 
requests per site based on their 
current job load and profile.

• The factory translates those 
resource requests to pilot jobs to 
various CEs.
- The hosted OSG-CE will 

transform these to jobs 
appropriate for your site’s batch 
system and submit over SSH.

13



Example – Processes on the 
SSH host

• On the SSH login host, the site will see two 
persistent SSH connections:
- One for the processes that interacts with the 

batch system (batch_gahp).
- One for file movement (condor_ft-gahp).

• These will occasionally launch other 
processes (e.q. qsub).

14



Sharing Compute Resources 
- Other Activities

• What else occurs at the site?
- You’ll see one set of processes on the submit host for 

each user account setup for OSG.
- Worker nodes need outgoing network connectivity to 

the central pool and submit hosts.  NAT is fine!
§ The outgoing IP addresses will vary from community to 

community.
- Only inbound connections go to SSH host.
- For non-HTCondor sites, a shared filesystem is needed 

to move startup scripts and logs.
• Individual science communities (such as LHC) may 

require additional services; let us know who you 
want to support, and we can provide more details.

15



No Batch System?
No Problem!

• Added in late 2020 was the ability for 
campuses to backfill resources with OSG.
- Campuses can launch a container directly on any 

available resource.
§ An especially popular option for Kubernetes-based

clusters.
- This is useful for backfill mode.

§ As OSG didn’t submit the resource request, no 
guarantee there’s available jobs to run.

§ That’s fine if the resource is otherwise idle.

• See documentation for more details.

16

https://opensciencegrid.org/docs/resource-sharing/os-backfill-containers/


Getting Started

• To get started with the hosted CE:
- Contact support@opensciencegrid.org to schedule 

a discussion with the OSG team.
§ This helps us set our goals for integrating the site and 

determine what services we should target.
- For hosted CEs, we’ll ask you to fill in the cluster 

integration questionnaire.
§ This simply gets us some basic technical facts.

• Feel free to contact us early in the design 
process – you don’t need to have a batch 
system or hardware to start planning!

17
Online Documentation

mailto:support@opensciencegrid.org
https://docs.google.com/forms/d/e/1FAIpQLSexKMFho_TGJ8nOY-qLXJf_8neAnjDSJqrNbYIUvMcOfoZ6Uw/viewform?usp=sf_link
https://opensciencegrid.org/docs/compute-element/hosted-ce/


SECURITY ON OSG

18



Security on OSG

• Security is an important process required to 
establish mutual trust between parties!
- OSG acts as a trusted middleman.
- OSG establishes identity and relationships with 

both sites and communities.
• Sites must know their computing resources are 

used for the advancement of science and 
engineering.
- For example, The facilitation team meets with each 

OSG User over video to help establish identity.
• Communities must know their computing is 

performed on valid resources.

19



Security on OSG

• A few examples of technical mechanisms in place 
to protect your site:
- TrustedCI, NSF’s Cybersecurity Center of Excellence, 

has performed an assessment of the security of the 
HTCondor-CE itself.
§ All of our containers are periodically rebuilt to pick up the latest 

RedHat security patches.
- The SSH private key is accessible only to the OSG 

Operations team and will only be used from specific, 
narrow IP ranges.
§ OSG components use mutual X.509-based authentication to 

establish identities; all communication is encrypted.
- All OSG services are periodically scanned for 

vulnerabilities.

20

https://blog.trustedci.org/2017/02/ccoe-and-osg-kickoff.html


Security – Everyone’s 
Responsibility

• Sites, too, have responsibilities:
- As necessary, participate in and be responsive 

during a security incident response.
- Notify OSG in the case of a site-level incident 

affecting grid components.
- Maintain a secure local environment; perform best-

practice techniques such as:
§ Keep hosts patched and up-to-date.
§ Maintain traceability – keep logs of activity at the site.
§ Monitor network activity for suspicious traffic.

• Remember, OSG users are trusting the site 
with their data, credentials, and scientific work!

21



ACCESS POINTS

22



OS Pool Access Points

• The OS Pool supports multiple access points.
- Each access point can be independently 

administered.
• OSG operates the “OSG Connect” access 

points on the OS Pool.
• Why do people run their own APs?

- Integration with local data sources.  Jobs can read 
directly from the local filesystem.

- Transparent access to local resources
- Allow users to login with the computing center 

credentials.
- In-house user support.

23



OS Pool Access Points

• What resources are needed to stand up an access point?  For 
hardware:
- Modest memory & CPU (minimum 16GB RAM, 4 cores).
- Incoming network access (TCP port 9618 open).
- Fast storage (SSD) for job database.

• Most often scale is driven by your users, not the minimum 
requirements.   Production access points are often much larger.

• The access point is distributed as an RPM and a security token.
- Beyond the obvious HTCondor scheduler service, a job accounting probe 

runs.
• The hardware resources are minimal – but operating a service is a

significant human resource commitment.
- Use support channels need to be setup.  In-house expertise on HTCondor 

is necessary.
- One way to build this expertise is to start with OSG Connect.  You can 

“shadow” OSG facilitators when they work with users from your ccampus.

24



Data Access in OSG

25

Data Origins from West to East:
LIGO
UNL x2
CHTC
FNAL
U.Chicago x2
JLab
GlueX @ U.Connecticut
Virgo

17 Caches … 6 of which are in R&E network backbone

10 Data Origins … one of which is for all of open science



Origin

• The OS Data Federation “origin” service allows users to 
access campus data without needing an access point 
on campus.

• The software, based on XRootD connects a local 
POSIX file system to the data federation.
- Clients connect directly to caches, not the origin.  Caches 

take the brunt of the load, especially for repeated data 
accesses.
§ In some cases, the origins see hundreds of GB of access while 

the caches deliver hundreds of TBs.
- The software is distributed as a Docker container or as 

RPMs.
• The origin provides coarse-grained authorization

access; practical to set up ACLs for directories trees but 
not at a per-file level.

26



CONTAINERS & DATA

27



Sharing Resources More 
Effectively

• Integrating a Hosted CE is the simplest way to 
share resources.
- Requires no site-run services and aims to minimize 

required site effort.
• By running additional services, your site will run 

more efficiently or be able to support a broader 
range of jobs
- Example: effectively all our GPU jobs require container 

support at the site.
• Your site does more science – but more effort is 

involved!
- Your local researchers may be the ones benefitting 

from these services.

28



Sharing Resources More 
Effectively

• Example campus-level services:
- HTTP Cache: helps avoid frequent retransfer of 

many (small) resources over HTTP.
- Worker-node Container Distribution: Global, 

read-only, caching filesystem for distributing 
containers and software (data is moved via the 
HTTP cache).

- Singularity: Allows us to launch jobs inside 
containers.  Relies on the container distribution 
mechanism.

• I’ll include links to documentation; tackle these 
if desired (and after the basics are working).

29



Sharing Resources More 
Effectively - HTTP Cache

• A broad set of data – software, configurations, job 
inputs – can be moved to the worker node via HTTP.  
A significant amount is very frequently reused.
- By placing a HTTP cache on-site, repeated data use 

only goes over the LAN instead of the WAN.
- Any caching HTTP proxy can work for OSG.  

However:
§ Not all scale well in terms of concurrency.
§ Most are tuned for HTML files, not objects in the >1MB 

range.
- We work with the Frontier project to support a special 

configuration of the venerable Squid software, frontier-
squid.  Monitoring, logging, and configuration are 
tuned specifically for OSG usage.

• Sysadmin Documentation.  Complexity level: Easy.  
Standalone service on dedicated host.
- Can be run on local Kubernetes by OSG staff.

30

https://opensciencegrid.org/docs/data/frontier-squid/


Sharing Resources More 
Effectively – Container 
Distribution (CVMFS)

• CVMFS is a global, integrity-checked, read-only POSIX 
filesystem.  This achieves scale by distributing data 
through HTTP caches and a CDN.
- Everything is cached – filesystem metadata and data – all the 

way to the local worker node.  Data is moved to the worker 
node only on access.

- In OSG, we use this as a mechanism to distribute science 
community containers and software.  Given the popularity of 
containers, many jobs require this.

- Downside: This is software that is run on the worker node, 
which adds complexity.

- Downside: Implemented using FUSE and autofs, two tricky 
technologies.

- Good news on the horizon: In newest CentOS 7, this can be 
done by the batch job completely unprivileged.  Nothing to 
install or monitor on the worker node.

§ Expected in the next glideinWMS release.
• Sysadmin Documentation.  Complexity level: 
Moderate.  Software that is installed on worker node & 
filesystem mounted.

31

https://opensciencegrid.org/docs/worker-node/install-cvmfs/


Sharing Resources More 
Effectively – Containers 

(Singularity)
• Singularity is a container runtime that aims to fit the needs of 

running containers inside a batch system.  No running daemon 
like Docker – just a process inside the batch job.
- For full functionality, a setuid (extra privileges) binary is needed.
- For OSG use cases – and on RHEL7 – we recommend using 

unprivileged (no setuid).
• The pilot will invoke Singularity prior to starting the payload; this 

way, the pilot sees the host operating system and the payload 
sees the container of its choice.
- The containers are typically distributed via CVMFS.

• OSG provides targeted support for the “community edition” of 
Singularity.

• Sysadmin Documentation.  Complexity level: Easy.  Single 
configuration file on worker node.

32

https://opensciencegrid.org/docs/worker-node/install-singularity/


Sharing Resources More 
Effectively – Data Caches

• The Frontier-Squid software targets the distribution of “small-
ish” objects – less then 1GB:
- Is inefficient to use for files over 1GB.
- Does not provide a mechanism to securely cache proprietary 

scientific data.  (Note: OSG does not provide mechanisms suitable 
for HIPAA data.)

• We have a separate software (XCache, a special configuration 
of the XRootD software) to fill this role.
- Designed for delivering 1-10GB of data to jobs where there is 

cache-friendly access and the total working set size of a workflow 
is <10TB.

- Provides mechanisms to authenticate and authorize 
- In the end, still transfers data via HTTP / HTTPS.

• Sysadmin Documentation.  Complexity Level: Moderate / Hard.
- Can be run on local Kubernetes by OSG staff.

33

https://opensciencegrid.org/docs/data/stashcache/install-cache/


Putting it all Together

• Some important take-homes for today:
- Campuses can share resources in a batch system 

with OSG through a compute entrypoint. 
§ OSG will host the CE so the site only needs a SSH login 

host, a batch system, and network.
§ OSG enables effective resource sharing using an overlay 

pool.
- Campuses can run access points locally to provide 

OSG integration.  Often this is done for data 
access or after successful use of OSG-Connect.

- Other site level services – Squid, Singularity, 
CVMFS, or data caches – allow the campus to 
better share local resources.

34



Questions?

This material is based upon work supported by the National Science Foundation 
under Grant No. 2030508. Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science Foundation.

support@opensciencegrid.org

https://www.nsf.gov/awardsearch/showAward?AWD_ID=%202030508
mailto:support@opensciencegrid.org


BACKUP SLIDES

36



RESOURCE ACCOUNTING

37



Resource Accounting for 
CC*

• CC* program aims to make available 20% of the resources to 
external communities.
- Both “make available” and “20%” are surprisingly hard to define.  

How you interpret this is between you and NSF – not OSG’s 
business!

- OSG helps provide input to this process by making some simple 
accounting numbers available.

• Unfortunately, accounting is surprisingly subtle on OSG:
- Pilot accounting tells us what compute resources were made 

available via the batch system.
- Payload accounting tells us how the communities use the 

allocated resources.
• Ideally, these are identical: in practice, they are not!

- Example: a pilot may start up but find that all payload jobs are 
already gone.

- In most cases, these numbers are within 10% of each other.

38



Other Accounting Gotchas

• A few other notable “gotchas”
- Not all communities report the same details to OSG on 

how they use the resources.
§ Example: LHC community does not provide payload details.

- Some communities utilize the OSG services to reach 
non-US sites.
§ Example: we only get payload information from European sites 

running IceCube, not pilot.
• Because this is complex, it’s useful to think carefully 

about what question you want to ask the system.
- I’ll walk through a few screenshots on what I think is 

most important.

39



Grid Resource ACCounting
(GRACC) portal

Accessible at 
https://gracc.
openscience
grid.org or by 
clicking on 
“explore our 
accounting 
portal” on the 
homepage.

40

https://gracc.opensciencegrid.org/
https://gracc.opensciencegrid.org/


Grid Resource ACCounting
(GRACC) portal

The “Site Summary” 
page defaults to all sites; 
use the drop-down to 
select your site name.
• You get to pick your 

site name.  Names 
like “Bellarmine 
University” tend to be 
more descriptive than 
“KR-KISTI-GSDC-
02”.

• This shows the view 
by community; in this 
case, only the special 
“osg” community was 
run.

41



Grid Resource ACCounting
(GRACC) portal

• Switch to the 
“payload” job 
type to get 
information 
about the 
resource usage, 
including

• The projects 
names inside the 
community.

• The 
corresponding 
fields of science.

42


